
Hyperfine interaction and electron-spin decoherence in graphene and carbon nanotube
quantum dots

Jan Fischer,1 Björn Trauzettel,2 and Daniel Loss1

1Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
2Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany

�Received 19 June 2009; revised manuscript received 4 September 2009; published 1 October 2009�

We analytically calculate the nuclear-spin interactions of a single electron confined to a carbon nanotube or
graphene quantum dot. While the conduction-band states in graphene are p-type, the accordant states in a
carbon nanotube are sp-hybridized due to curvature. This leads to an interesting interplay between isotropic
and anisotropic hyperfine interactions. By using only analytical methods, we are able to show how the inter-
action strength depends on important physical parameters, such as curvature and isotope abundances. We show
that for the investigated carbon structures, the 13C hyperfine coupling strength is less than 1 �eV, and that the
associated electron-spin decoherence time can be expected to be several tens of microseconds or longer,
depending on the abundance of spin-carrying 13C nuclei. Furthermore, we find that the hyperfine-induced
Knight shift is highly anisotropic, both in graphene and in nanotubes of arbitrary chirality.
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I. INTRODUCTION

The spin of an electron confined to a semiconductor quan-
tum dot is a prime candidate for quantum information pro-
cessing devices, with potential applications in spintronics1–3

and quantum computation.4–6 Schemes for quantum compu-
tation rely on a sufficiently long lifetime of initialized spin
states. One major problem is that the electron is not isolated
from its environment but interacts with the nuclei in the
semiconductor it has been confined to. This interaction leads
to relaxation of excited spin states, as well as to the decay of
spin-state superpositions �decoherence�. For most quantum
dots at low temperatures, the main source of spin decoher-
ence is the electron’s interaction with a fluctuating magnetic
field created by the randomly precessing nuclear spins.7–13

For III-V semiconductor quantum dots, with their high abun-
dance of spin-carrying nuclear isotopes, the associated deco-
herence times are quite short, usually of order
nanoseconds,8–10,14 if no manipulations on the nuclear sys-
tem are performed.

One way of overcoming the problem of short decoherence
times is to build quantum dots from semiconductors with
lower abundances of spin-carrying isotopes, potentially re-
sulting in weaker nuclear-spin interactions. Carbon structures
naturally consist of 99% 12C with nuclear-spin 0 and only of
1% 13C with nuclear-spin 1

2 , and are therefore promising ma-
terials for building quantum dots featuring long spin deco-
herence times. This extraordinary property of carbon materi-
als, as well as their comparatively weak spin-orbit
interactions, has led to proposals of fabricating quantum dots
in graphene ribbons with armchair boundaries15 and in car-
bon nanotubes �CNTs�.16

Although it was not yet possible to experimentally realize
a single-electron quantum dot in graphene, Coulomb-
blockade measurements in gated graphene quantum dots
have already been carried out successfully.17,18 Experiments
on single electrons in CNTs have advanced even more.19–33

Very recently, first measurements on nuclear-spin interac-
tions and electron-spin dynamics in CNTs have been

performed,34,35 reporting an unexpectedly strong hyperfine
interaction of order A�100 �eV in 13C-enriched CNTs �we
will comment on the discrepancy between this result and our
calculations in Sec. VI�. Furthermore, theoretical and experi-
mental NMR studies on fullerenes36 have been carried out as
well as ab initio calculations on hyperfine interaction in
small graphene flakes.37 An analytical investigation of
nuclear-spin interactions of electrons confined to graphene
and CNTs, however, has so far been missing.

In our work, we analytically calculate the interaction of a
single electron confined to a graphene ribbon or a CNT �see
Fig. 1� with the spins of the surrounding 13C nuclei. For
CNTs we find an interesting interplay between isotropic and
anisotropic hyperfine interactions which depends on the CNT
geometry and which leads to a highly anisotropic Knight
shift and an unusual alignment of the nuclear spins around a
CNT circumference �in the ground state�. Furthermore, we
calculate the decoherence dynamics of the electron spin and

(b)
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FIG. 1. �Color online� Sketch of the systems under consider-
ation throughout this work: �a� a single electron confined to a quan-
tum dot defined by two barriers on a graphene ribbon; �b� a single-
electron quantum dot defined in a carbon nanotube. Externally
applied magnetic fields are indicated by the red arrows.
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find that, even without manipulating the nuclear spins, the
hyperfine-associated decoherence times can be on the order
of tens of microseconds or longer, depending on the relative
abundance of 13C nuclei. These time scales are much longer
than the ones typically found for III-V semiconductor quan-
tum dots, making carbon-based quantum dots promising
spin-qubit candidates.

Our paper is organized as follows: in Sec. II we determine
the wave function of a conduction-band electron in a CNT.
In Sec. III we derive an effective Hamiltonian for the
nuclear-spin interactions and find a highly anisotropic cou-
pling of the electron to the 13C nuclear spins, which results in
an anisotropic Knight shift and an unusual alignment of the
nuclear spins around the nanotube, as shown in Sec. IV. In
Sec. V, we determine the electron-spin dynamics and the
associated spin decoherence times. We give a detailed com-
parison of our results with previous studies on comparable
systems in Sec. VI, and conclude in Sec. VII.

II. BONDS AND BANDS

The carbon atom features six electrons: two core electrons
and four valence electrons. In a solid, the four valence elec-
trons �which are in 2s and 2p states� form the bonds with the
nearest-neighbor atoms. In two-dimensional graphite, or
graphene, each atom has three nearest neighbors, and three
of the four valence electrons form sp2-hybridized bonds
�called � bonds� with those neighbors, while the fourth elec-
tron is in a so-called � state perpendicular to the � bonds.38

The � electrons in graphene determine the band structure
near the Fermi energy, while the � electrons form more re-
mote bands. A conduction-band electron is therefore in a �
state.

A CNT can be regarded as a graphene sheet that had been
rolled up along some direction c, defining a symmetry axis t
of the CNT. The circumferential and translational vectors are
defined in terms of the basis vectors a1 and a2 as �see Fig. 2�

c = na1 + ma2, t = t1a1 + t2a2. �1�

Here, n ,m�N0 are the chiral indices, and t1= �2m+n� /dR,
t2=−�2n+m� /dR with dR being the greatest common divisor

of 2n+m and 2m+n. We denote the chiral angle between c
and a1 by �=�nm.

The curvature of the CNT causes a geometrical tilting of
the � bonds which results in an sp hybridization of the
conduction-band states. In Ref. 39, this effect has been stud-
ied perturbatively in lowest order in the small parameter
2� /L, where L=�n2+nm+m2 is the circumference of the
CNT in units of the lattice constant a�2.5 Å.54

The wave function of a conduction-band electron in a
periodic crystal is given by Bloch’s theorem: �k�

= 1
�NA

eik·ruk��r�, where NA is the number of atomic sites in
the crystal and the Bloch amplitude uk��r� has the periodic-
ity of the lattice. Following Ref. 40, we approximate the
Bloch amplitude uk��r� at the K and K� points by a linear
combination of hydrogenic orbitals, u��r�=�R��r−R�,
where39

��r� = Nnm��2p�
�r� +

�

2�3L
��2s�r� + sin�3�nm� ��2pt

�r�

+ cos�3�nm� ��2pc
�r��	 , �2�

and the sum runs over all lattice sites in the CNT. In the
above, �2s represents a hydrogenic 2s orbital, �2pt

, �2pc
, and

�2p�
are, respectively, the 2p orbitals along the transverse,

circumferential, and radial direction of the CNT, and Nnm
normalizes the Bloch amplitude to two atoms per unit cell.
�nm� is the angle between c and R1, and we can write
sin�3�nm� �= �n−m��2n2+5nm+2m2� /2L3 and cos�3�nm� �
=3�3nm�n+m� /2L3 in terms of the chiral indices.39 The hy-
drogenic orbitals consist of a radial and an angular part, e.g.,
�2s�r�=R20�r�Y0

0�� ,��. We will choose a local coordinate
system at each lattice site, such that �2pt

, �2pc
, and �2p�

correspond to hydrogenic 2p orbitals in z, y, and x direction,
respectively �see below�. The radial components of the hy-
drogenic orbitals depend on an effective screened nuclear
charge Zeff “seen” by the electron.41

Our choice of the Bloch amplitude implicitly assumes that
the electron is tightly bound to the nuclei, i.e., that the radial
component of ��r� drops off fast on the scale of the nearest-
neighbor distance. We have estimated that 
��r
+Rn.n.�
2 / 
��r�
2�10−3 for any nearest-neighbor lattice vec-
tor Rn.n., justifying our assumption.

In a quantum dot, the electron is delocalized over many
lattice sites and its Bloch amplitude is modulated by an
envelope-function 	� defined by the confinement potential
�see Ref. 16 for the envelope function of a quantum dot
defined by a rectangular confinement potential in a semicon-
ducting CNT�. Including the spin states 
��= 
↑ ,↓�, we write
the electron states as


��� = 
	�;u��
�� , �3�

where, in the envelope-function approximation, �r 
	� ;u��
=	��r�u��r�. Since we did not include spin-orbit interac-
tions in our model, the orbital wave function is independent
of the spin state, and we may omit the subscript � :	��r�
=	�r� and u��r�=u�r�.

a1

c

R1

a2

R2

R3

t

θ
a1

FIG. 2. �Color online� Definitions used throughout this work: a1

and a2 denote the basis vectors of the honeycomb lattice, R j are the
relative nearest-neighbor positions, c and t are the circumferential
and transverse vectors, respectively, and �=�nm is the chiral angle
between c and a1.
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III. NUCLEAR-SPIN INTERACTIONS

A. Carbon nanotubes

There are three terms that couple the spin of the confined
electron to the nuclear spins in the CNT: the Fermi contact
interaction, the anisotropic hyperfine interaction and the cou-
pling of electron orbital angular momentum to the nuclear
spins. These interactions are represented by the
Hamiltonians42

h1
k =

�0

4�

8�

3

S
 jk

��rk�S · Ik, �4�

h2
k =

�0

4�

S
 jk

3�nk · S��nk · Ik� − S · Ik

rk
3�1 + d/rk�

, �5�

h3
k =

�0

4�

S
 jk

Lk · Ik

rk
3�1 + d/rk�

, �6�

respectively, where 
S=2�B, 
 jk
=gjk

�N, �B is the Bohr mag-
neton, gjk

is the nuclear g factor of isotopic species jk, �N is
the nuclear magneton, �0 is the vacuum permeability, rk=r
−Rk is the electron-spin position operator relative to the kth
nucleus, d�Z�1.5�10−15 m is a length of nuclear dimen-
sions, Z is the charge of the nucleus, and nk=rk /rk. S and
Lk=rk�p denote the spin and orbital angular-momentum
operators �with respect to the kth nucleus� of the electron,
respectively. The cutoff 1+d /rk comes from the Dirac equa-
tion �see, e.g., Ref. 42� and avoids unphysical divergences
from expectation values of the Hamiltonians h2

k and h3
k. In the

problem considered here, this cutoff may be omitted for the
following reasons: �i� the expectation values of h2

k and h3
k

with respect to an s state vanish identically due to the spheri-
cal symmetry of the wave function and the vanishing orbital
angular momentum, respectively. The expectation values
with respect to a p state are nonzero, but the p-wave function
goes to zero sufficiently fast at the position of each nucleus,
thus avoiding a divergence. �ii� As mentioned above, the
electron wave function does not extend significantly to the
nearest-neighbor lattice sites. Hence, within our tight-
binding approximation, the orbital ��r� centered around
some nucleus cannot cause a divergence at the position of a
nearest neighbor.

We note that the orbital angular-momentum Lk which ap-
pears in Eq. �6� is associated with the electronic motion
around the kth nucleus and is described by the Bloch part of
the electron wave function. On the other hand, it has been
shown in Ref. 43, that interatomic currents can occur along
the nanotube circumference to which another orbital angular-
momentum L may be associated which is described by the
envelope part of the electron wave function. However, the
hyperfine coupling strength is defined via the Bloch part of
the electron wave function and therefore a consideration of
the coupling between the valley degrees of freedom via
envelope-function-associated angular momenta is beyond the
scope of the present work.

We will consider CNTs and graphene with different abun-
dances of the nuclear isotopes 12C and 13C. While 12C does
not carry a nuclear spin, the nuclear gyromagnetic ratio of

13C is nonvanishing and given by 
13C=7.1�10−27 J /T.
The Fermi contact interaction �4� yields a finite contribu-

tion for s states, but vanishes for p states. The anisotropic
hyperfine interaction �5� and the coupling of orbital angular
momentum �6� vanish for s states because of their spherical
symmetry and zero orbital angular momentum, but yield a
finite contribution for p states. Therefore, when considering
CNTs, all three interactions �4�–�6� have to be taken into
account because of the sp-hybridized electron states �2�,
while for graphene, only the interactions �5� and �6� are rel-
evant, due to the purely p-type wave function �corresponding
to the limit n ,m→
 in Eq. �2��.

We first calculate matrix elements of the interactions
�4�–�6� with respect to the electron wave function �3�, which
will lead to effective spin Hamiltonians and to the associated
coupling strengths in the CNT case. Throughout this section,
we will consider a CNT that consists only of spin-carrying
13C isotopes. The possibility of different nuclear isotope
abundances will then be taken into account in Sec. V. From
the CNT results, it will be possible to perform the “graphene
limit,” which we postpone to Sec. III B.

We start with the Fermi contact interaction and calculate

���
h1
k
���� =

2�0
S
13C

3 �
k


u�rk�
2
	�rk�
2��
S · Ik
��� ,

�7�

assuming that the electron-spin density does not depend on
the lattice site, which is justified if, e.g., the envelope-
function 	�r� describes the ground state of the quantum dot.
The effects of a site dependence of the electron-spin density
have been recently considered in Ref. 44. Evaluating the spin
matrix elements leads to the following effective spin Hamil-
tonian:

H1 = �
k

Ak
�1�S · Ik, �8�

with coupling constants Ak
�1�=A1v0
	�rk�
2 �where v0 is the

volume of a primitive unit cell� and the associated coupling
strength

A1 =
�0
S
13CZeff

3

3�a0
3 Nnm

2 �nm
2 , �9�

where we have introduced �nm=� /2�3L, and a0 is the Bohr
radius. The normalization factor Nnm can be determined by
normalizing Eq. �2� to two atoms per unit cell

Nnm = 2� L2

�2 + 4L2 . �10�

We have evaluated Eq. �9� for CNTs of different chiralities in
Table I. For typical CNTs, the coupling strength A1 is about
three orders of magnitude smaller than that for an electron in
a GaAs quantum dot �A1

GaAs�90 �eV, see Ref. 45�, for two
reasons: �i� the hybridization prefactor Nnm�nm is on the or-
der of 0.05 and enters quadratically into A1. �ii� The effective
nuclear charge �which enters in third power into A1� is
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Zeff
C �3.2 for carbon, but Zeff

Ga�7.1 for gallium and Zeff
As

�8.9 for arsenic.41

The sign of the isotropic interaction is positive for all
nanotube diameters, in contrast to results reported
previously,46 where spin relaxation of conduction electrons
has been calculated numerically and a sign change in the
hyperfine coupling constant A1 has been found for small
nanotube diameters. This is due to the fact that in Ref. 46 the
coupling of the 1s core electrons to the nuclear spins is in-
cluded, which, however, is irrelevant for the hyperfine inter-
action of a conduction electron and, hence, for the electron
spin dephasing considered in this article.

Now we look at the anisotropic hyperfine interaction. Due
to symmetry, the s part of the hybridized wave function does
not contribute. Taking matrix elements ���
h2

k
���� just like
above, we arrive at an effective Hamiltonian

H2 = �
k

�Ak
�2,x�SxIk

x + Ak
�2,y�SyIk

y + Ak
�2,z�SzIk

z� , �11�

with coupling constants Ak
�2,j�=A2

j v0
	�rk�
2 and the coupling
strengths

A2
j =

�0
S
13CZeff
3

120�a0
3 Nnm

2 � j , �12�

where

�x = 1 −
1

2
�nm

2 , �13�

�y = −
1

2
−

1

2
�nm

2 sin2�3�nm� � + �nm
2 cos2�3�nm� � , �14�

�z = −
1

2
+ �nm

2 sin2�3�nm� � −
1

2
�nm

2 cos2�3�nm� � . �15�

We see that the coupling induced by the anisotropic hyper-
fine interaction is different in all three spatial directions. Re-
call that we have labeled our axes such that z, y, and x refer
to the translational, circumferential, and radial directions, re-
spectively. We show typical values for A2

j in Table I. The
direction of strongest hyperfine interaction is radial to the
nanotube.55 It is interesting to note the competing signs: the
Fermi contact interaction �expressed via A1� enhances the
anisotropic hyperfine interaction along the radial direction,
but reduces it along the circumferential and transverse direc-
tions. Furthermore, the signs of the hyperfine coupling along
different directions indicate ferro- and antiferromagnetic

alignment of the nuclear spins with respect to the electron
spin �in the ground state�. We will come back to this in
Sec. IV.

Finally, we address the coupling of electron orbital angu-
lar momentum. Calculating matrix elements of h3

k, it is
straightforward to see that this interaction vanishes identi-
cally by applying the operators Lj to the hydrogenic orbitals
appearing in Eq. �2�, then evaluating ���
h3

k
���� and sum-
ming up all contributions.

B. Graphene

We consider the “graphene limit” corresponding to let
n ,m→
 in all expressions in Sec. III A. Then �nm→0 and
Nnm→1 and, denoting quantities related to graphene with a
tilde,

Ã1 = 0, Ã2
z = Ã2

y = −
Ã2

x

2
= −

�0
S
13CZeff
3

240�a0
3 . �16�

Inserting numbers, this yields Ã2
z = Ã2

y �−0.3 �eV and Ã2
x

�0.6 �eV. Note that in our notation the x direction is per-
pendicular to the graphene plane.

Surprisingly, these numbers are not much different from
those estimated for A2

j in Sec. III A. Naively, one might have
expected a weaker hyperfine interaction in graphene �as com-
pared to CNTs� due to its flatness and the vanishing contact
interaction �4�. As it turns out, however, even for small CNTs
the contact interaction is only a small correction to the an-
isotropic hyperfine interaction �5�, so that the latter is the
main hyperfine contribution for both CNTs and flat graphene.

IV. HYPERFINE-INDUCED ANISOTROPIC KNIGHT
SHIFT

In Secs. II and III, we have formulated the hyperfine prob-
lem in terms of a local coordinate system at each nucleus. In
this section, we want to look at the Knight shift in the 13C
nuclear spins due to hyperfine interaction with the conduc-
tion electron. The isotropic Knight shift due to interaction
with both the sp-hybridized conduction-band electron and
the 1s core electron has been studied in Ref. 47. Electron-
spin resonance spectra of 13C in �-electron radicals have
been analyzed in Ref. 48.

From our considerations in Sec. III A it is clear that the
Knight shift induced by the anisotropic hyperfine interaction
�
A2

j /N� exceeds the isotropic Knight shift �
A1 /N� by
roughly one order of magnitude �N is the number of nuclei in

TABLE I. Estimated hyperfine coupling strengths �in �eV� for nanotubes of different chiralities
�n ,m�.

�10,0� �20,0� �5,10� �9,15� �5,5� �10,10� �20,20�

A1 0.19 0.05 0.12 0.05 0.26 0.07 0.02

A2
x 0.59 0.60 0.59 0.60 0.58 0.60 0.61

A2
y −0.29 −0.30 −0.30 −0.30 −0.29 −0.30 −0.30

A2
z −0.30 −0.30 −0.30 −0.30 −0.30 −0.30 −0.30
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the dot�. The Knight shift in CNTs �and graphene� is there-
fore highly anisotropic.

We introduce the following global coordinate system: x̃
=x cos �−y sin �, ỹ=x sin �+y cos �, z̃=z, such that the x̃ỹ
plane cuts out a cross section of the CNT and � is the coor-
dinate describing the position on this cross section �see Fig.
3�.

The electron is assumed to be prepared in a fixed state and
to be delocalized over the CNT cross section. At each lattice
point occupied by a 13C nucleus, the nuclear spin will align
itself in such a way that the hyperfine energy is minimized in
the ground state of the nuclear spins. This ground state can
only be achieved for temperatures that are small with respect
to the energies associated with the Knight shift: kBT� �A1
+A2

j � /N
1 peV. . .1 neV, where kB is the Boltzmann con-
stant. We write the Hamiltonian describing the hyperfine in-
teraction of one nucleus with the delocalized electron as

Hhf� = STAI = S̃TÃĨ , �17�

where ST= �Sx ,Sy ,Sz�, A=diag�Ax ,Ay ,Az�, I= �Ix , Iy , Iz�T, S̃T

=STR†, Ã=RAR†, and Ĩ=RI, with the rotation R given by

R = �cos � − sin � 0

sin � cos � 0

0 0 1
� . �18�

The operators carrying a tilde hence describe the interaction
in the global coordinate system �x̃ , ỹ , z̃�, and the coupling
tensor is given by

Ã = �Ax cos2 � + Ay sin2 � �Ax − Ay�sin � cos � 0

�Ax − Ay�sin � cos � Ax cos2 � + Ay sin2 � 0

0 0 Az
� .

Here, Aj =A1+A2
j is the sum of isotropic and anisotropic hy-

perfine couplings along the �local� j-direction �j=x ,y ,z�, see
Eqs. �9� and �12�. Recall that Ax�0 and Ay ,Az�0 for CNTs
�see Sec. III A�. For an electron spin in an eigenstate of Sx̃,
the interaction reads

Hhf
x̃ = �Ax̃x̃I

x̃ + Ax̃ỹI
ỹ�Sx̃ �19�

with Ax̃x̃=Ax cos2 �+Ay sin2 � and Ax̃ỹ = �Ax−Ay�sin � cos �.
In Fig. 3 we show the alignment of the nuclear spins

�assuming the nuclear spins to be in their ground state� due
to the anisotropic Knight shift induced by the hyperfine in-
teraction with a conduction electron whose spin is prepared
in the eigenstate of Sx̃ with eigenvalue +1 /2, i.e., pointing
along the x̃ direction at each nuclear site. We have assumed
that the electron is evenly distributed around the CNT cross
section, which can be seen to be justified from the envelope
functions calculated in Ref. 16 for semiconducting CNTs
subject to a rectangular confinement potential. We observe an
interesting interplay between ferro- and antiferromagnetic
coupling along the two spatial directions, which is a direct
consequence of the CNT geometry and the strong anisotropy
of the hyperfine interaction. In particular, the hyperfine inter-
action does not vanish when we average over the CNT cir-
cumference. This could lead to other interesting effects. For
instance, it has been shown in Ref. 49 that in a Luttinger
liquid, a nonvanishing average hyperfine field can lead to a
transition into a helically ordered phase �along the tube axis�
of the nuclear spins below some critical temperature.

V. ELECTRON-SPIN DECOHERENCE

A. Carbon nanotubes

Based on our analysis in Sec. III, the electron-spin dy-
namics in a CNT are described by the following hyperfine
Hamiltonian:

Hhf = h · S, hj = �
k

Ak
jIk

j , �20�

where Ak
j =Ajv0
	�rk�
2 and Aj =A1+A2

j , see Eqs. �9� and
�12�.

We assume that an external magnetic field Bz has been
applied along the symmetry axis of the CNT �see Fig. 1�b��,
and that the induced Zeeman splitting between the spin states
is larger than the hyperfine coupling strength: b=g�BBz
�Aj. Assuming g�2, this corresponds to very moderate
fields of Bz�5 mT. Within this limit, relaxation-induced de-
coherence is suppressed by the small parameter Aj /b, and the
main source of decoherence is pure dephasing due to
nuclear-field fluctuations along the CNT symmetry axis. The
relevant Hamiltonian is given by the z part of Eq. �20� and
the Zeeman term

H = �b + hz�Sz. �21�

Assuming that all nuclei carry nonzero spin, the dynamics of
the transverse spin is then given by a Gaussian decay with
time scale given by �N /Az, where N is the total number of
nuclear spins in the quantum dot.10

One advantage of carbon-based nanostructures is the low
natural abundance of the spin-carrying isotope 13C. In order
to investigate this advantage, we allow for arbitrary 13C
abundances: we denote the total number of nuclei in the
quantum dot �defined via the envelope function, see below�
by N, and by N12 and N13 the number of 12C and 13C nuclei,

x�

y�

Ζ

FIG. 3. �Color online� Alignment of the nuclear spins �in the
ground state� due to the anisotropic Knight shift. The electron is
assumed to be prepared in the eigenstate of Sx̃ with eigenvalue
+1 /2, see Eq. �19�, and points along x̃ at each nuclear-spin site.
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respectively, such that N=N12+N13. This generalization has
two relevant effects: �i� summing over all N nuclei, we get
�kAk

z =�Az, i.e., the total hyperfine coupling is weakened by
the ratio �=N13 /N. �ii� The polarization p of the nuclear-spin
system �0� p�1� is determined only by the distribution of
spin-up and spin-down 13C nuclei, while being unaffected by
the 12C nuclei.

For N13�1 we can use the central limit theorem �compare
with Ref. 10� which yields the following Gaussian dynamics
for the transverse electron spin �written in the frame rotating
with frequency ��+ p�Az /2� /�, where �=b−bN with the
nuclear Zeeman energy bN=gN�NBz�:

�S+�t = �S+�0e−t2/�c
2
. �22�

Here, S+=Sx+ iSy, with the electron-spin operators Sj =� j /2
and the Pauli operators � j. The characteristic time scale for
the decay is given by10

�c =
2�

�1 − p2

N
�N13Az

. �23�

We can see from Eq. �23� that the decoherence time �c has an
interesting nonlinear dependence on the abundance of 13C
nuclei.

The total number N of nuclei in the quantum dot is deter-
mined by the quantum-dot confinement. Assuming a rectan-
gular confinement along the symmetry axis16 and a �20,0�
CNT of length 300 nm, we estimate N�6�105. We show
the electron-spin decoherence time �c as a function of the
relative 13C abundance in Fig. 4 for a completely unpolarized
nuclear bath �p=0�. We see that decoherence times of several
tens of microseconds can be expected for higher 13C abun-
dances. For the natural 13C abundance of about 1%, we es-
timate �c�200 �s from Eq. �23�. The inset of Fig. 4 shows
the Gaussian decay of the spin coherence �Eq. �22�� for
CNTs containing 1% �solid line� and 99% �dashed line� 13C
nuclei. We note that further increase in the decoherence time
�c, say by a factor of x, would require isotopic purification
and the reduction in the natural 13C abundance by about a

factor of x2. The decoherence law in Eqs. �22� and �23� of
course breaks down at the point when only a few nuclear
spins are present in the dot.

B. Graphene

For an electron confined to a graphene quantum dot, the

contact interaction vanishes identically �Ã1=0, see Eq. �16��,
and only the anisotropic hyperfine interaction contributes to
spin decoherence. We assume an externally applied magnetic
field Bx perpendicular to the graphene plane �see Fig. 1�a��,
giving rise to a Zeeman splitting b̃=g��BBx, where g��2 is
the electron g factor in the out-of-plane direction. If the Zee-
man splitting is much larger than the energy associated with

the transverse hyperfine terms, b̃� Ã2
z , Ã2

y, the electron-spin
dynamics are governed by a Gaussian decay similar to the
CNT case �22�, but with a characteristic time scale given by

�̃c =
2�

�1 − p2

N

�N13Ã2
x

. �24�

For a quantum dot with width W=30 nm and length L
=30 nm, we estimate the total number of nuclei to be N
�4�105. We show �̃c as a function of the relative 13C abun-
dance in Fig. 5: for higher 13C abundances, decoherence
times �̃c�1 �s can be expected, while for the natural 13C
abundance of 1%, we estimate �̃c�80 �s.

C. Comparison and discussion

It is interesting to note that the electron-spin decoherence
times in graphene are shorter than in CNTs. Naively, one
would assume that the CNT curvature and the associated
hybridization would lead to an enhancement of the nuclear-
spin interactions due to the contact interaction �4�. As it turns
out, however, the contact interaction in a CNT has a compet-
ing sign as compared to the anisotropic hyperfine interaction
along the CNT symmetry axis and, hence, effectively re-
duces the total hyperfine coupling strength along the direc-
tion of the external magnetic field. For ultrasmall CNTs it
might happen that the total hyperfine coupling along the
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FIG. 4. �Color online� Electron-spin decoherence time �c in a
�20,0� CNT as a function of the relative 13C abundance N13 /N,
under the condition of a magnetic field Bz�5 mT along the sym-
metry axis of the CNT. We have chosen a completely unpolarized
nuclear system �p=0� and N=6�105, see text below Eq. �23�. In-
set: electron-spin dynamics in CNTs with 13C abundances of 1%
�solid blue curve� and 99% �dashed red curve�, in the frame rotating
with �+ pN13, see Eq. �22�.
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FIG. 5. �Color online� Electron-spin decoherence time �c in
graphene as a function of the relative 13C abundance N13 /N, under
the condition of a magnetic field Bx�5 mT perpendicular to the
graphene plane. We have chosen p=0 and N=4�105 �see text in
Sec. V B�. Inset: electron-spin dynamics in graphene with 13C
abundances of 1% �solid blue curve� and 99% �dashed red curve�,
in the rotating frame.
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symmetry axis approaches zero.56 This, however, is beyond
the validity of our theory.

For typical CNTs, the dominant contribution to the
nuclear-spin interactions in CNTs comes from the anisotropic
hyperfine interaction. This is because the amount of s-orbital
admixture in the hybridized wave function of a conduction-
band electron is rather small: on the order of a few percent.

In our considerations throughout this section, we have
neglected the hyperfine terms which are transverse to the
externally applied magnetic field, i.e., radial and circumfer-
ential in the case of a CNT, and in-plane in the case of
graphene. This gives a good first approximation of the deco-
herence time, as long as the external magnetic field is large
enough to suppress spin flips induced by the hyperfine terms
transverse to the external field. For both CNTs and graphene,
magnetic fields of order B�5 mT are sufficiently strong to
achieve this.

VI. COMPARISON WITH PREVIOUS WORK

In Table II we compare our results for the hyperfine inter-
action in graphene and CNTs with those given in earlier pub-
lications for comparable systems. Yazyev’s values37 for the
hyperfine interactions in small graphene flakes were derived
from DFT calculations including the � bands. The values for
the anisotropic hyperfine interaction are similar to our results
but a nonvanishing �and even negative� value for the isotro-
pic hyperfine interaction is reported, which is, however, as-
sociated with the coupling between the nuclear spins and the
1s core electrons, which is irrelevant for the dephasing of the
conduction electron. Pennington and Stenger36 give esti-
mates for the hyperfine interaction in fullerenes and report
coupling constants which are slightly larger than our values.
The relatively large value for the isotropic hyperfine interac-
tion can be explained by the stronger curvature in C60 mol-
ecules, leading to stronger sp-hybridization of the electron
states, as compared to CNTs. Goze-Bac et al.50 have esti-
mated the hyperfine interaction in CNTs based on measure-
ments of the chemical shift in 13C.

Churchill et al.34 have estimated the hyperfine interaction
in carbon nanotubes from transport measurements in double

quantum dots, but do not comment on the anisotropy of the
interaction. A hyperfine coupling strength of 
100 �eV for
pure 13C CNTs is reported in their work, in clear contrast to
our results. Currently, this discrepancy is not understood.
One possible explanation51 for this might be that the theory
developed in Ref. 52 for standard GaAs quantum dots and
used in Ref. 34 to deduce the hyperfine coupling strength
gets modified by the valley degeneracy occurring in CNT
and thus this could lead to different conclusions. Another
possible explanation34 could be that the effective electron-
nuclear interaction gets greatly enhanced by electron-
electron interactions and the one-dimensional character of
the system. A similar renormalization was recently noticed in
the context of nuclear magnetic ordering in CNT.49 Clearly,
this is an interesting open problem, which, however, requires
separate study.

VII. CONCLUSIONS

We have calculated the nuclear-spin interactions and the
resulting spin dynamics of an electron confined to a CNT or
graphene quantum dot. In graphene, only the anisotropic hy-
perfine interaction couples the electron to the nuclear spins,
due to the purely p-type electron wave function. In a CNT,
curvature induces an sp-hybridization of the electron orbital,
opening a new channel of spin decoherence via the Fermi
contact interaction. However, for typical CNTs, the Fermi
contact interaction is only a small correction to the aniso-
tropic hyperfine interaction, the latter being the main source
of nuclear-spin-induced decoherence of the electron spin. We
found the total hyperfine coupling strength of an electron
with the 13C nuclei to be less than 1 �eV for both graphene
and CNTs quantum dots—about two orders of magnitude
smaller than the hyperfine interaction of an electron in a
GaAs or InAs quantum dot.

We have used a simple model for the sp-hybridization in
CNTs, from which we have derived the hyperfine interaction.
We have checked, however, that a numerical tight-binding
band structure calculation yields hybridization on the same
order of magnitude as the geometrical approach used in this
work.53 Nevertheless, a more rigorous band structure calcu-
lation including also the influence of the CNT � bands would
be desirable in the future.

For CNTs, we have found an interesting interplay of hy-
perfine couplings along different spatial directions, leading to
a highly anisotropic Knight shift and an alignment of the 13C
nuclear spins around the CNT in the ground state of the
nuclear spins. This result is particularly interesting when
viewed in context of the hyperfine-induced nuclear phase
transition predicted in Ref. 49 for a Luttinger liquid, which
requires a nonvanishing mean value of the hyperfine field.
The strong anisotropy of the hyperfine field that we have
found in our work thus gives further evidence that such
phase transitions could occur in CNTs. We emphasize that
this anisotropy is present in CNTs of any chirality, in particu-
lar also in metallic CNTs. The results presented here have
been used very recently in the context of transport though
CNT quantum dots.44

Furthermore, we have estimated typical electron-spin de-
coherence times in CNT and graphene quantum dots. We

TABLE II. Comparison of our hyperfine coupling strengths with
the values from previous publications for comparable systems. We
give our values for a �20,0� zigzag nanotube and for graphene. See
Sec. VI for a detailed discussion.

A1

��eV�
A2

x

��eV�
A2

y,z

��eV�

Our values �CNT� 0.05 0.6 −0.3

Our values �Graphene� 0 0.6 −0.3

Yazyevb �Graphene flakes� −0.2 0.6 −0.3

Pennington, Stengera �C60� 0.1 0.9 −0.5

Goze-Bac et al.c �CNT� 0.04 0.9 −0.5

aReference 36.
bReference 37.
cReference 50.
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have shown that relaxation-induced decoherence due to
nuclear spins can be suppressed by applying a magnetic field
of order 5 mT to the system, leaving only pure dephasing due
to fluctuations of the nuclear magnetic field. We have esti-
mated that for a �20,0� zigzag CNT quantum dot containing
N�6�105 nuclei, and for a magnetic field applied along the
CNT symmetry axis, the associated decoherence time is of
order �c�1 �s, depending on the relative 13C abundance.
We emphasize that our analytical treatment of the hyperfine
problem applies to CNTs of any chirality. For a graphene
quantum dot containing N=4�105 nuclei, and for a mag-
netic field applied perpendicular to the graphene plane, the
decoherence time is of order �̃c�0.5 �s, again depending
on the relative 13C abundance.

The hyperfine interaction in the systems we have consid-
ered here is rather weak. Therefore, it could, in principle, be
that other mechanisms, such as spin-orbit interactions, limit
the lifetime of spin-state superpositions on time scales com-

parable to those we have estimated here �see Ref. 16 for
details�.

The decoherence times we have estimated throughout this
work are among the longest reported so far. This makes
quantum dots based on carbon materials attractive spin-qubit
candidates. In particular, the tunability of the average hyper-
fine coupling strength via the abundance of spin-carrying 13C
nuclei could be used to achieve an optimal balance between
a long electron-spin decoherence time and a sufficiently
strong coupling to control the electron-spin state by manipu-
lating the nuclear-spin system.
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